Nanomedicine, Volume I: Basic Capabilities

© 1999 Robert A. Freitas Jr. All Rights Reserved.

Robert A. Freitas Jr., Nanomedicine, Volume I: Basic Capabilities, Landes Bioscience, Georgetown, TX, 1999


 

3.5.7.4 Pin Cushion Model

The pin cushion receptor, suggested independently by K.E. Drexler [personal communication, 1996], is a hemispheroidal or hemiellipsoidal shell through which a number of rods protrude, each of which may be moved radially (Fig. 3.14). When inserted through the shell to varying depths, the endpoints of the rods define a negative image surface which may be made to mirror the topography and charge distribution of a known target molecule. Rods may be tipped with positive, negative or no charge, or they may terminate in any number of functionalized surface segments designed to optimally match parts of the target molecule shape. Other configurations such as a rectangular box, hinged plates with protruding rods, counterrotating rollers, or time-varying rod positioners are readily conceivable. Pin cushion receptors are easily reconfigured to bind different target molecules, hence may be regarded as fully programmable "universal" binding sites. The principal difficulty with the pin cushion receptor is its excessive size (compared to other receptor models) and its greater complexity (since each rod may be controllable individually).

Pin cushion receptors can also be used to discover the shapes of unknown molecules (Section 3.5.8): A target molecule is placed in the central cavity with all rods fully retracted, and the rods are slowly slid forward using nanopistons with force reflection feedback, until all pistons register zero force, indicating balance between attractive and repulsive van der Waals interactions, at which point all rod positions are recorded. Rods of differing end tip charge may then be tested for additional attractive potential. The final result is a precise mapping of the target molecule, which data may be stored or transmitted elsewhere for future use.

 


Last updated on 7 February 2003