Nanomedicine, Volume IIA: Biocompatibility
© 2003 Robert A. Freitas Jr. All Rights Reserved.
Robert A. Freitas Jr., Nanomedicine, Volume IIA: Biocompatibility, Landes Bioscience, Georgetown, TX, 2003
15.5.7.2.2 Cytopuncture and Membrane Resealing
The routine successful transplantation of cell nuclei by microbiologists using micropipettes demonstrates that cells can naturally recover from extreme membrane and cytoplasmic trauma. As noted in Section 9.4.5.6, it is not uncommon to observe rapid natural resealing of plasma membranes with little loss of intracellular contents [4239, 4240]. In one experiment, tissue cell plasma membranes were punctured using 2- to 3-micron diameter micropipettes and a 300-millisec transit (wounding) time, and the torn plasma membrane spontaneously resealed in 10-30 sec with relatively little visible loss of injected dye [4239]. We can estimate (Section 9.4.5.5) that a cytopenetrating 1-micron nanorobot with a 10-millisec transit time may allow cytosolic leakage of only 0.006-0.03 micron3, or ~0.0001-0.0004% of typical tissue cell volume, per nanorobot transit.
Interestingly, Maroto and Hamill [5642] point out that most animal cell types [5643] naturally release ATP (or UTP) into the extracellular medium, whereupon these external molecules, at µM concentrations [5650], “act on ATP receptors that regulate diverse functions, including pain and touch sensation, smooth muscle contractility, synaptic transmission, platelet aggregation, epithelial fluid secretion, and endothelial release of vasorelaxants [5649-5653]; abnormalities in ATP release may contribute to specific human diseases, most notably cystic fibrosis [5647, 5654].” ATP release is often mechanosensitive and appears to arise through mechanical stimulation of brefeldin A sensitive membrane trafficking of ATP containing transport vesicles [3973, 5642-5649]: a Xenopus oocyte releases ATP at a basal rate of ~1.3 ATP molecules/µm2-sec, but even gentle mechanical stimulation can dramatically increase this to ~6700 ATP molecules/µm2-sec (assuming 1.2-mm diameter oocytes) [5642]. Care must be taken in medical nanorobot design and mission specification to avoid activities which may elicit elevated pathological ATP releases.
Microelectrodes traditionally used for intracellular injection
had 0.5-micron diameter tips, beveled over a 1-2 micron length, and used very
high fluid injection pressures of 0.3-1.5 atm [4235].
“Stab” microinjection at high pressure (0.1-0.2 atm) can be problematic
in small cells (2-15 microns in diameter) because the nucleus-to-cytoplasm ratio
is higher for these cells, hence the nucleus is more likely to be damaged during
the stab. In one experiment [4236], less
than 5% of neutrophils survived the high-pressure stab intact, but a low-pressure
(~0.01 atm) injection through a lipid bridge produced a ~100% survival rate.
Optical fiber tips ~0.1 micron in diameter or “optodes” have been
poked through a cellular plasma membrane to measure cytoplasmic pH and the concentrations
of other intracellular analytes, making a penetration volume of just a few micron3
in single cells and in single rat embryos, without ill effect on these cells
[4237, 4238].
Membrane resealing after electroporation has also been studied [5981].
Exocytosis-based resealing [4240-4242]
of a microneedle puncture through the fibroblast plasma membrane occurs in 5-10
sec [4242], but a second puncture at the
same site heals faster than the initial wound [4241].
At first wounding, the cell uses existing endocytotic compartment to add membrane
necessary for resealing. But Ca++ entry at the first wound stimulates
vesicle formation from the Golgi apparatus, resulting in more rapid resealing
of the second membrane disruption [4241].
Plasma membrane disruptions are resealed by changes in the cellular cytoskeleton
(partial disassembly) [4243] and by an
active molecular mechanism thought to be composed of, in part, kinesin, CaM
kinase, snap-25, and synaptobrevin [4244].
Transmission electron microscopy [4244]
reveals that vesicles of a variety of sizes rapidly (in seconds) accumulate
in large numbers within the cytoplasm surrounding the disruption site, and that
microvilli-like surface projections overlie this region. Tufts of microvilli
rapidly appear on wounded cells. A local exocytosis is induced, rather than
global exocytosis, in response to wounding. One or more internal membrane compartments
accumulate at the disruption site and fuse there with the plasma membrane, resulting
in the local addition of membrane to the surface of the mechanically wounded
cell [4244]. As an existence proof for
membrane-patching medical nanorobots, specialized membrane-patching organelles
are known in some species. For example, “reserve granule” or “yolk
granule” fusion-competent cytoplasmic organelles in sea urchin eggs allow
Ca++-regulated fusion with a rapid (t1/2 < 1 sec) response
capable of erecting large (>1000 micron2) continuous membrane
boundaries [4242]. The cells of many species
of fungi cells have a specialized peroxisomal plasma resealing organelle called
the Woronin body [4245]. In some circumstances,
cells can re-seal themselves even after major dissections, and survive. For
example, a rapidly vibrating (100 Hz) micropipette with a <1-micron tip diameter
has been used to completely sever individual dendrites from single neurons without
damaging cell viability [4246].
Last updated on 30 April 2004