Nanomedicine, Volume I: Basic Capabilities © 1999 Robert A. Freitas Jr. All Rights Reserved. |
(See note regarding left-handed DNA depicted in cover art.)
Preferred Literature Citation for Nanomedicine, Volume I:
Robert A. Freitas Jr., Nanomedicine, Volume I: Basic Capabilities, Landes Bioscience, Georgetown, TX, 1999; http://www.nanomedicine.com/NMI.htm
Capsule Summary of Nanomedicine, Volume I:
Nanomedicine, Vol. I: Basic Capabilities (Landes Bioscience, 1999). The first volume of the Nanomedicine book series describes the set of basic capabilities of molecular machine systems that may be required by many, if not most, medical nanorobotic devices, including the physical, chemical, thermodynamic, mechanical, and biological limits of such devices. Specific topics include the abilities to recognize, sort and transport important molecules; sense the environment; alter shape or surface texture; generate onboard energy to power effective robotic functions; communicate with doctors, patients, and other nanorobots; navigate throughout the human body; manipulate microscopic objects and move about inside a human body; and timekeep, perform computations, disable living cells and viruses, and operate at various pressures and temperatures.
Purchase a Printed Copy of Nanomedicine, Volume I:
Landes Bioscience
Amazon.com (Hardcover)
(Softcover)
Barnes & Noble (Hardcover)
(Softcover)
Japanese language version of Nanomedicine, Vol. I, published in 2007 by Yakuji Nippo, Ltd:
Reviews of Nanomedicine, Volume I:
Technical Criticisms of Nanomedicine, Volume I:
Return to Nanomedicine Book Site
Nanomedicine, Volume I: Basic Capabilities
© 1999 Robert A. Freitas Jr. All Rights Reserved.
TABLE OF CONTENTS
Dedication
Table
of Contents
List
of Figures
List
of Tables
Foreword
by K. Eric Drexler
Preface and Acknowledgements
Opening
Quotations
1.1 A Noble Enterprise
1.2 Current Medical Practice
1.2.1 The
Evolution of Scientific Medicine
1.2.1.1 Prehistoric Medicine
1.2.1.2 Ancient Mesopotamian Medicine
1.2.1.3 Ancient Egyptian Medicine
1.2.1.4 Ancient Greek Medicine
1.2.1.5 Ancient Alexandrian Medicine
1.2.1.6 Ancient Roman Medicine
1.2.1.7 Medicine in the Middle Ages
1.2.1.8 Renaissance and Pre-Modern Medicine
1.2.1.9 Fully Invasive Surgery
1.2.1.9.1 Anatomy
1.2.1.9.2 Anesthesia
1.2.1.9.3 Germ Theory and
Antisepsis
1.2.1.10 Cells and Tissues
1.2.1.11 Blood Transfusions
1.2.1.12 20th Century Medicine
1.2.1.13 21st Century Medicine
1.2.2 Volitional
Normative Model of Disease
1.2.3 Treatment
Methodology
1.2.3.1 Examination
1.2.3.2 Diagnosis
1.2.3.3 Prognosis and Treatment
1.2.3.4 Validation and Prophylaxis
1.2.4 Evolution
of Bedside Practice
1.2.4.1 Specialization and Holistic Medicine
1.2.4.2 Customized Diagnosis and Therapeutics
1.2.4.3 The Physician-Patient Relationship
1.2.5 Changing
View of the Human Body
1.3 The Nanomedical Perspective
1.3.1 Nanomedicine
and Molecular Nanotechnology
1.3.2 Nanomedicine:
History of the Idea
1.3.2.1 The Biological Tradition
1.3.2.2 The Mechanical Tradition
1.3.2.3 Nanomedicine in the 1990s
1.3.3 Biotechnology
and Molecular Nanotechnology
1.3.4 Naturophilia
1.4 Background and Brief Overview of This Book
2.1 Is Molecular Manufacturing Possible?
2.2 Top-Down Approaches to Nanotechnology
2.3 Bottom-Up Pathways to Molecular Manufacturing
2.3.1 Biotechnology
2.3.2 Molecular
and Supramolecular Chemistry
2.3.3 Scanning
Probe Technology
2.4 Molecular Components and Molecular Assemblers
2.4.1 Molecular
Mechanical Components
2.4.2 Molecular
Assemblers
Chapter
3. Molecular Transport and Sortation
3.1 Human Body Chemical Composition
3.2 Diffusion Transport
3.2.1 Brownian
Motion
3.2.2 Passive
Diffusive Intake
3.2.3 Active
Diffusive Intake
3.2.3.1 Diffusive Stirring
3.2.3.2 Diffusive Swimming
3.2.4 Diffusion
Cascade Sortation
3.2.5 Nanocentrifuge
Sortation
3.3 Membrane Filtration
3.3.1 Simple
Nanosieving
3.3.2 Dynamic
Pore Sizing
3.3.3 Gated
Channels
3.4 Receptor-Based Transport
3.4.1 Transporter
Pumps
3.4.2 Sorting
Rotors
3.4.3 Internal
Transport Streams
3.5 Molecular Receptor Engineering
3.5.1 Physical
Forces in Molecular Recognition
3.5.2 Ligand-Receptor
Affinity
3.5.3 Ligand-Receptor
Specificity
3.5.4 Ligand-Receptor
Dynamics
3.5.5 Diamondoid
Receptor Design
3.5.6 Minimum
Feature Size and Positioning Accuracy
3.5.7 Receptor
Configurations
3.5.7.1 Imprint Model
3.5.7.2 Solid Mosaic Model
3.5.7.3 Tomographic Model
3.5.7.4 Pin Cushion Model
3.5.7.5 Construction Costs
3.5.7.6 Receptor Durability
3.5.8 Ligand-Receptor
Mapping
3.5.9 Large
Molecule Binding, Sorting, and Transport
4.1 Nanosensor Technology
4.2 Chemical and Molecular Nanosensors
4.2.1 Broadband
Receptor Arrays
4.2.2 Narrowband
Receptor Arrays
4.2.3 Counting
Rotors
4.2.4 Chemical
Assay
4.2.5 Chemical
Nanosensor Theoretical Limits
4.2.6 Spatial
Concentration Gradients
4.2.7 Temporal
Concentration Gradients
4.2.8 Chemotactic
Sensor Pads
4.2.9 Receptor
Sensors
4.3 Displacement and Motion Sensors
4.3.1 Displacement
Sensors
4.3.2 Velocity
and Flow Rate Sensors
4.3.3 Acceleration
Sensors
4.3.3.1 Box-Spring Accelerometers
4.3.3.2 Displacement Accelerometers
4.3.3.3 Fluid Acceleration Sensors
4.3.3.4 Pivoted Gyroscopic Accelerometers
4.3.3.5 Accelerative Onset
4.3.4 Angular
Displacement
4.3.4.1 Gimballed Nanogyroscopes
4.3.4.2 Nanopendulum Orientation Sensing
4.3.4.3 Nanopendulum Tachometry
4.4 Force Nanosensors
4.4.1 Minimum
Detectable Force
4.4.2 Nanogravimeters
4.4.3 Single-Proton
Massometer
4.4.4 Isotope
Discrimination
4.5 Pressure Sensing
4.5.1 Minimum
Detectable Pressure
4.5.2 Spatial
Pressure Gradients
4.5.3 Temporal
Pressure Gradients
4.5.4 Ullage
Sensors
4.6 Thermal Nanosensors
4.6.1 Minimum
Detectable Temperature Change
4.6.2 Piston-Based
Temperature Sensors
4.6.3 Thermal-Expansion
Temperature Sensors
4.6.4 Mechanochemical
Temperature Sensors
4.6.5 Spatial
Thermal Gradients
4.6.6 Temporal
Thermal Gradients
4.7 Electric and Magnetic Sensing
4.7.1 Electric
Fields
4.7.2 Magnetic
Fields
4.7.3 Optical
Sensing
4.7.4 Particulate
and High-Energy Radiation
4.8 Cellular Bioscanning
4.8.1 Cellular
Topographics
4.8.2 Transcellular
Acoustic Microscopy
4.8.3 Magnetic
Resonance Cytotomography
4.8.4 Near-Field
Optical Nanoimaging
4.8.5 Cell
Volume Sensing
4.8.6 Noninvasive
Neuroelectric Monitoring
4.8.6.1 Electric Field Neurosensing
4.8.6.2 Magnetic Field Neurosensing
4.8.6.3 Neurothermal Sensing
4.8.6.4 Direct Synaptic Monitoring
4.8.6.5 Other Neurosensing Techniques
4.8.7 Cellular
RF and Microwave Oscillations
4.9 Macrosensing
4.9.1 Acoustic
Macrosensing
4.9.1.1 Cyto-Auscultation
4.9.1.2 Blood Pressure and Pulse Detection
4.9.1.3 Respiratory Audition
4.9.1.4 Mechanical Body Noises
4.9.1.5 Vocalizations
4.9.1.6 Environmental Sources
4.9.2 Proprioceptive
Macrosensing
4.9.2.1 Kinesthetic Macrosensing
4.9.2.2 Orientational Macrosensing
4.9.2.3 Body Weight Measurement
4.9.2.4 Gravitational Geographic Macrosensing
4.9.3 Electric/Magnetic
Macrosensing
4.9.3.1 Vascular-Interstitial Closed Electric Circuits
4.9.3.2 Electric/Magnetic Geographic Macrosensing
4.9.3.3 Piezoelectric Stress Macrosensing
4.9.4 Optical Macrosensing
4.9.5 Neural
Macrosensing
4.9.6 Other
Macrosensing
5.1 Flexible Form and Function
5.2 Optimum Nanorobot Shape
5.2.1 Free-Floating
Solitary Nanodevices
5.2.2 Actively
Swimming Nanodevices
5.2.3 Intracellular
Nanodevices
5.2.4 Tessellating
Nanodevice Aggregates: Nanotissues
5.2.4.1 Tiling Nondeforming Surfaces
5.2.4.2 Tiling Deforming Surfaces
5.2.5 Space-Filling
Nanodevice Aggregates: Nano-Organs
5.3 Metamorphic Surfaces
5.3.1 General
Design Considerations
5.3.1.1 Dimple Size
5.3.1.2 Keyhole Passage
5.3.1.3 Extensibility
5.3.1.4 Reactivity
5.3.2 Metamorphic
Surface Configurations
5.3.2.1 Accordion Model
5.3.2.2 Parasol Model
5.3.2.3 Telescoping Model
5.3.2.4 Flexible Fabric Model
5.3.2.5 Block Exchange Model
5.3.3 Metamorphic
Power and Control
5.3.4 Engulf
Formations
5.3.5 Reconfiguring
Surface-Penetrating Elements
5.3.6 Presentation
Semaphores
5.3.7 Chromatic
Modification
5.4 Metamorphic Bumpers
5.4.1 Nanojunction
Mechanisms
5.4.2 Transbumper
Communication
5.4.3 Bumper
Mechanics
6.1 Nanodevice Energy Resources
6.2 Energy Storage
6.2.1 Gravitational
Energy Storage
6.2.2 Mechanical
Energy Storage
6.2.2.1 Pendulums and Springs
6.2.2.2 Flywheels
6.2.2.3 Pressurized Fluids
6.2.3 Chemical
Energy Storage
6.2.4 Electric
and Magnetic Energy Storage
6.2.5 Nuclear
Energy Storage
6.3 Power Conversion
6.3.1 Thermal
Energy Conversion Processes
6.3.2 Mechanical
Energy Conversion Processes
6.3.3 Acoustic
Energy Conversion Processes
6.3.4 Chemical
Energy Conversion Processes
6.3.4.1 Human Chemical Energy Resources
6.3.4.2 Biological Chemomechanical Power Conversion
6.3.4.3 Artificial Chemomechanical Power Conversion
6.3.4.4 Glucose Engine
6.3.4.5 Chemoelectric Cells
6.3.5 Electrical
Energy Conversion Processes
6.3.6 Photonic
Energy Conversion Processes
6.3.7 Nuclear
Energy Conversion Processes
6.3.7.1 Radionuclides
6.3.7.2 Nuclear Fusion
6.3.7.3 Exothermal Nuclear Catalysis
6.4 Power Transmission
6.4.1 Acoustic
Power Transmission
6.4.2 Inductive
and Radiofrequency Power Transmission
6.4.3 Tethered
Power Transmission
6.4.3.1 Electrical Tethers
6.4.3.2 Electromagnetic Tethers
6.4.3.3 Hydraulic and Acoustic Tethers
6.4.3.4 Gear Trains and Mechanical Tethers
6.4.3.5 Chemical Tethers
6.4.3.6 Power Tether Configurations in vivo
6.4.4 Dedicated
Energy Organs
6.5 Design Energetics Assessment
6.5.1 Power
in Biological Cells
6.5.2 Thermogenic
Limits in vivo
6.5.3 Nanorobot
Power Scaling
6.5.4 Selection
of Principal Power Source
6.5.5 Electrical
vs. Mechanical Systems
6.5.6 Power
Analysis in Design
6.5.7 Global
Hypsithermal Limit
7.1 Nanorobot Communications Requirements
7.2 Communication Modalities
7.2.1 Chemical
Broadcast Communication
7.2.1.1 Ideal Messenger Molecule
7.2.1.2 Diffusion-Limited Broadcast Rate
7.2.1.3 Instantaneous Stationary Source in Stationary Medium
7.2.1.4 Instantaneous Stationary Source in Flooded Tube
7.2.1.5 Continuous Stationary Source in Stationary Medium
7.2.1.6 Continuous Mobile Source in Stationary Medium
7.2.1.7 Continuous Stationary Source in Nonstationary Medium
7.2.1.8 Assessment of Chemical Broadcast Messaging
7.2.2 Acoustic
Broadcast Communication
7.2.2.1 Acoustic Radiators
7.2.2.2 Free-Tissue Acoustic Channel Capacity
7.2.3 Electromagnetic
Broadcast Communication
7.2.4 Nanomechanical
Communication
7.2.5 Cable
Communication
7.2.5.1 Electrical Cables
7.2.5.2 Infrared and Optical Cables
7.2.5.3 Acoustic Cables and Transmission Lines
7.2.5.4 Mechanical Cables
7.2.5.5 Chemomessenger Cables
7.2.6 Communicytes
7.3 Communication Networks
7.3.1 Fiber
Networks
7.3.2 Mobile
Networks
7.3.3 Networks
Assessment
7.3.4 Dedicated
Communication Organs
7.4 Communications Tasks
7.4.1 Inmessaging
from External Sources
7.4.2 Inmessaging
from Patient or User
7.4.2.1 Mechanical Inmessaging
7.4.2.2 Kinesthetic Inmessaging
7.4.2.3 Acoustic Inmessaging
7.4.2.4 Chemical Inmessaging
7.4.2.5 Electromagnetic and Thermal Inmessaging
7.4.2.6 Neural Inmessaging
7.4.2.7 Macroscale Inmessaging Transducers
7.4.3 Intradevice
Messaging
7.4.4 Interdevice
Messaging
7.4.5 Biocellular
Messaging
7.4.5.1 Natural Cellular Communication
7.4.5.2 Inmessaging from Cells
7.4.5.3 Outmessaging to Cells
7.4.5.4 Cell Message Modification
7.4.5.5 Inmessaging from Neurons
7.4.5.6 Outmessaging to Neurons
7.4.6 Outmessaging
to Patient or User
7.4.6.1 Somesthetic Outmessaging
7.4.6.2 Kinesthetic Outmessaging
7.4.6.3 Auditory Outmessaging
7.4.6.4 Gustatory and Olfactory Outmessaging
7.4.6.5 Ocular Outmessaging
7.4.6.6 Artificial Symptoms
7.4.6.7 Macroscale Outmessaging
Transducers
7.4.7 Outmessaging
to External Receivers
7.4.8 Transvenue
Outmessaging
8.1 Navigating the Human Body
8.2 Human Somatography
8.2.1 Navigational
Vasculography
8.2.1.1 Arteriovenous Macrocirculation
8.2.1.2 Arteriovenous Microcirculation
8.2.1.3 Lymphatic System
8.2.2 Navigational
Bronchography
8.2.3 Navigational
Alimentography
8.2.4 Navigational
Osteography
8.2.5 Organography and Histonavigation
8.3 Positional Navigation
8.3.1 Dead
Reckoning
8.3.2 Cartotaxis
8.3.3 Microtransponder
Networks
8.3.4 Vascular
Bifurcation Detection
8.3.5 Macrotransponder
Networks
8.3.6 Dedicated
Navigational Organs
8.4 Functional Navigation
8.4.1 Thermographic
Navigation
8.4.1.1 Thermography of the Human Body
8.4.1.2 Thermal Demarcation
8.4.1.3 Low-Resolution Thermographics
8.4.1.4 High-Resolution Thermographics
8.4.2 Barographic
Navigation
8.4.3 Chemographic
Navigation
8.4.4 Microbiotagraphics
8.5 Cytonavigation
8.5.1 Cytometrics
8.5.2 Cytoidentification
8.5.2.1 Identification of Self
8.5.2.2 Identification of Cell Type
8.5.3 Cytography
8.5.3.1 Overall Cell Structure
8.5.3.2 Cell Membrane
8.5.3.3 Cytosol
8.5.3.4 Ribosomes
8.5.3.5 Endoplasmic Reticulum
8.5.3.6 Golgi Complex
8.5.3.7 Vesicles, Granules, and Vaults
8.5.3.8 Lysosomes and Proteasomes
8.5.3.9 Peroxisomes
8.5.3.10 Mitochondria
8.5.3.11 Cytoskeleton
8.5.3.12 Cytonavigational Issues
8.5.4 Nucleography
8.5.4.1 Nuclear Envelope
8.5.4.2 Nuclear Pore Complexes
8.5.4.3 Nuclear Cortex
8.5.4.4 Nucleoplasm and Chromatin
8.5.4.5 Nucleolus
8.5.4.6 Nuclear Matrix and Transcript Domains
8.5.4.7 Nucleonavigational
Issues
8.6 Ex Vivo Navigation
8.6.1 Epidermal
Navigation
8.6.2 Exodermal
Navigation
9.1 Nanorobot Dexterity and Mobility
9.2 Adhesion and Fluid Transport
9.2.1 Van der Waals Adhesion Forces
9.2.2 Electrostatic
Adhesion Forces
9.2.3 Immersive
Adhesion Forces
9.2.4 Capillarity
and Nanoscale Fluid Flow
9.2.5 Pipe
Flow
9.2.6 Effervescence
and Crystallescence
9.2.7 Fluid
Pumping and Plumbing
9.2.7.1 Pressure Release Pumps
9.2.7.2 Positive Displacement Pumps
9.2.7.3 Turbomolecular Gas Pumps
9.2.7.4 Nonmechanical Pumps
9.2.7.5 Fluid Mixing
9.2.7.6 Nanoplumbing and Fluidic Circuits
9.2.7.7 Containerized Flow
9.3 Nanomanipulators
9.3.1 Nanoscale
Manipulators
9.3.1.1 Biological Cilia
9.3.1.2 Nanocilium Manipulators
9.3.1.3 Pneumatic Manipulators
9.3.1.4 Telescoping Manipulators
9.3.1.5 Stewart Platform Manipulators
9.3.1.6 Metamorphic Manipulators
9.3.2 Nanoscale
End-Effectors and Tool Tips
9.3.3 Sensors
and Manipulator Control
9.3.4 Manipulator
Arrays
9.3.5 Materials
Disassembly for Disposal
9.3.5.1 Morcellation and Mincing
9.3.5.2 Disposability Engineering
9.3.5.3 Diamondoid Decomposition
9.3.5.3.1 Grinding
9.3.5.3.2 Cleavage
9.3.5.3.3 Sonication
9.3.5.3.4 Thermal Decomposition
9.3.5.3.5 Molecular Mechanodecomposition
9.3.5.3.6 Chemical and Microbial Decomposition
9.4 In Vivo Locomotion
9.4.1 Rheology
of Nanorobot-Rich Biofluids
9.4.1.1 Biofluid Viscosity
9.4.1.2 Viscosity of Whole Blood
9.4.1.3 Radial Distribution of Blood Elements
9.4.1.4 Viscosity of Nanorobot-Rich Blood
9.4.1.5 Bloodstream Velocity Profiles
9.4.1.6 Hematocrit Reduction in Narrow Vessels
9.4.2 Sanguinatation
9.4.2.1 Reynolds Number
9.4.2.2 Rotations and Collisions in sanguo
9.4.2.3 Disturbed Flows, Hydrodynamic Interactions, and Entropic Packing
9.4.2.4 Force and Power Requirements
9.4.2.5 Nanomechanisms for Natation
9.4.2.5.1 Surface Deformation
9.4.2.5.2 Inclined Plane
9.4.2.5.3 Volume Displacement
9.4.2.5.4 Viscous Anchoring
9.4.2.6 Additional
Considerations
9.4.3 Cytoambulation
9.4.3.1 Ambulatory Contact Event
9.4.3.2 Cell Plasma Membrane Elasticity
9.4.3.2.1 Plasma Membrane Areal Expansion Elasticity
9.4.3.2.2 Plasma Membrane Shear Elasticity
9.4.3.2.3 Plasma Membrane Bending Elasticity
9.4.3.3 Anchoring and Dislodgement Forces
9.4.3.4 Contact Event Cycling
9.4.3.5 Legged Ambulation
9.4.3.6 Tank-Tread Rolling
9.4.3.7 Amoeboid Locomotion
9.4.3.8 Inchworm Locomotion
9.4.4 Histonatation
9.4.4.1 Nanorobot Diapedesis
9.4.4.2 ECM Brachiation
9.4.4.3 Intercellular Passage
9.4.4.4 Nanorobot Conjugation and Partition
9.4.5 Cytopenetration
9.4.5.1 Transmembrane Brachiation
9.4.5.2 Metamorphic Screw Drive
9.4.5.3 Solvation Wave Drive
9.4.5.4 Vesicle Fusion and Endocytotic Entry
9.4.5.5 Cytosolic Leakage During Transit
9.4.5.6 Breach Sealing and Intrusiveness
9.4.5.7 Nuclear Membrane Penetration
9.4.6 In
Cyto Locomotion
9.4.7 Cytocarriage
9.4.7.1 Objectives of Cytocarriage
9.4.7.2 Cytovehicle Selection
9.4.7.3 Cytocarriage Initiation
9.4.7.4 Steering and Control
9.4.7.5 Navigation and Sensing
9.4.7.6 Cytovehicular Behavioral Control
9.5 Ex Vivo Locomotion
9.5.1 Dental
Walking
9.5.2 Epidermal Locomotion
9.5.3 Nanoflight
9.5.3.1 Nanoflight and Reynolds Number
9.5.3.2 Nanoflight and Gravity
9.5.3.3 Buoyant Nanoballoons
9.5.3.4 Nanoflyer Force and Power Requirements
9.5.3.5 Hovering Flight
9.5.3.6 No-Fly Zones
10.1 Nanochronometry
10.1.1
Human Chronobiology
10.1.2
Artificial Nanoscale Oscillators
10.1.2.1 Mechanochemical & Photochemical Oscillators
10.1.2.2
Mechanical Oscillators
10.1.2.3 Acoustic Transmission Line Oscillators
10.1.2.4 Quartz Resonators
10.1.2.5 Atomic Frequency Standards
10.1.3
Nanorobot Synchronization
10.1.4
Dedicated Chronometer Organs
10.2 Nanocomputers
10.2.1
Nanomechanical Computers
10.2.2
Nanoelectronic Computers
10.2.2.1 Molecular Wires
10.2.2.2 Electromechanical Molecular Switching Devices
10.2.2.3 Field-Controlled Molecular Switching Devices
10.2.2.4 Other Molecular Electronic Devices
10.2.2.5 Molecular Electrostatic Field Computers
10.2.3
Biocomputers
10.2.3.1 Biochemical Computers
10.2.3.2 Biomechanical Computers
10.2.3.3 Organic and Bioelectronic Computers
10.2.4
Ultimate Limits to Computation
10.2.4.1 Reversible Computers
10.2.4.2 Quantum Computers
10.2.4.3 Bekenstein-Bounded Computation
10.2.5
Dedicated Computational Organs
10.3 Pressure Storage and Ballasting
10.3.1
Fluid Storage Tank Scaling
10.3.2
The Van der Waals Equation
10.3.3
Pressure-Altered Physical Properties
10.3.4
Vessel Leakage and Flammability
10.3.5
Vacuum Pumping and Storage
10.3.6
Buoyancy Control and Nanapheresis
10.4 Cytocide and Virucide
10.4.1
Biochemical Cytocide and Virucide
10.4.1.1 Apoptosis
10.4.1.2 Phagocytic Flagging
10.4.1.3 Cell Division Arrest
10.4.1.4 Chemical Poisoning
10.4.2
Mechanical Cytocide and Virucide
10.4.2.1 Transmembrane Siphonation and Ionic Disequilibration
10.4.2.2 Mechanical Cytoskeletolysis and Monkeywrenching
10.4.2.3 Gross Cellular Disruption
10.4.2.4 Mechanical
Virucide
10.4.2.4.1 Sequester and Transport (ST)
10.4.2.4.2 Digest and Discharge (DD)
10.4.2.5 Mechanical Bacteriocide
10.4.2.5.1 Desiccate, Sequester & Transport (DST)
10.4.2.5.2 Neuter and Release (NR)
10.4.2.5.3 Liquefy, Digest and Discharge (LDD)
10.4.2.6 Cytocarriage Disposal
10.5 Temperature Effects on Medical Nanorobots
10.5.1
Dimensional Stability and Strength
10.5.2 Viscosity and Locomotion
in Ice
10.5.3
Solubility and Solvents
10.5.4
Heat Conductivity and Capacity, and Refrigeration
10.5.5
Other Temperature-Dependent Properties
Afterword
by Ralph C. Merkle
Appendix
B. Concentrations of Human Blood Components
Appendix
C. Catalog of Distinct Cell Types
in the Adult Human Body
REFERENCES
Index
Back
Cover
Return to Nanomedicine Book Site
Nanomedicine, Volume I, last updated on 1 March 2016
since 3 March 2003